T-DOSE, Eindhoven 2015-11-2[89]

NUXi

CloudABI: safe, testable and

. maintainable software for UNIX
! Speaker:
. Ed Schouten, ed@nuxi.nl




nuxi

Overview

What’s wrong with UNIX?
Introducing CloudABI
Developing CloudABI software
Starting CloudABI processes
Use cases for CloudABI




nuxi

What is wrong with UNIX?

UNIX is awesome, but in my opinion:

e Itdoesn’t stimu

ate you to run software securely.

e Itdoesn’t stimu

ate you to write reusable and

testable software.
e system administration doesn’t scale.




nuxi

UNIX security problem #1

A web service only needs to interact with:

e incoming network connections for HTTP requests,
e optional: a directory containing data files,
e optional: database backends.

In practice, an attacker can:

create a tarball of all world-readable data under /,
register cron jobs,

spam TTYs using the write tool,

turn the system into a botnet node.




nuxi

Access controls: AppArmor

In my opinion not a real solution to the problem:

e Puts the burden of securing applications on package
maintainers and end users.

e Application configuration can easily get out of sync
with security policy.

e Common solution if security policy doesn’t work:
disable AppArmor.




nuxi

Capabilities: Capsicum

Technique available on FreeBSD to sandbox software:

1. Program starts up like a regular UNIX process.
2. Process calls cap_enter ().

o Process can interact with file descriptors.
read(),write(), accept(),openat(), etc.

o Process can’t interact with global namespaces.
open(), etc. will return ENOTCAPABLE.

Used by dhclient, hastd, ping, sshd, tcpdump, and
various other programs.




Capsicum is awesome! It works as advertised.
Other systems should also support it.

Code isn’t designed to have system calls disabled.

o FreeBSD’s C libraries: timezones, locales unusable.

o Various libraries: non-random PRNG.

o Heisenbugs, Mandelbugs and Hindenbugs.

‘Capsicum doesn’t scale’.

o Porting small shell tools to Capsicum is easy.

o Porting applications that use external libraries becomes
exponentially harder.



nuxi

UNIX security problem #2

Untrusted third-party applications:

e Executing them directly: extremely unsafe.
e Using Jails, Docker, etc.: still quite unsafe.
e Inside a VM: safe, but slow.

Why can’t UNIX just safely run third-party executables
directly? Wasn’t the operating system intended to
provide isolation?




nuxi

Reusability and testability

Claim: UNIX programs are hard to reuse and test.




nuxi

Reuse and testing in Java #1

class WebServer {
private Socket socket;
private String root;
WebServer () {

this.socket = new TCPSocket(80);
this.root = “/var/www":

10



nuxi

Reuse and testing in Java #2

class WebServer {
private Socket socket;
private String root;
WebServer(int port, String root) {

this.socket = new TCPSocket(port);
this.root = root;

11



nuxi

Reuse and testing in Java #3

class WebServer {
private Socket socket;
private Filesystem root;
WebServer (Socket socket, Filesystem root) {
this.socket = socket;
this.root = root;

12



nuxi

Reusability and testability

UNIX programs are similar to the first two examples:

e Parameters are hardcoded.

e Parameters are specified in configuration files
stored at hard to override global locations.

e Resources are acquired on behalf of you, instead of
allowing them to be passed in.

Dependencies are not injected. A double standard,
compared to how we write code.

13



nuxi

Reusable and testable web server

#include <sys/socket.h>
#include <unistd.h>

int main() {
int fd;
while ((fd = accept(0, NULL, NULL)) >= 0) {
const char buf[] = “HTTP/1.1 200 OK\r\n"
“Content-Type: text/plain\r\n\r\n”
“Hello, world\n”;
write(fd, buf, sizeof(buf) - 1);
close(fd);

14



nuxi

Reusable and testable web server

Web server is reusable:

e Web server can listen on any address family (IPv4,
IPv6), protocol (TCP, SCTP), address and port.
e Spawn more on the same socket for concurrency.

Web server is testable:

e It can be spawned with a UNIX socket. Fake
requests can be sent programmatically.

15



nuxi

Overview

What’s wrong with UNIX?
Introducing CloudABI
Developing CloudABI software
Starting CloudABI processes
Use cases for CloudABI

16



nuxi

Introducing CloudABI

A new UNIX-like runtime environment that allows you
to more easily develop:

e software that is better protected against exploits,
e software that is reusable and testable,
e software that can be deployed at large scale.

In a nutshell:
POSIX + Capsicum always enabled - conflicting APIs.

17



nuxi

Default rights

By default, CloudABI processes can only perform
actions that have no global impact:

They can allocate memory, create pipes, socket
pairs, shared memory, etc.

They can spawn threads and subprocesses.

They can interact with clocks (gettimeofday, sleep).
They cannot open paths on disk.

They cannot create network connections.

They cannot observe the global process table.

18



nuxi

Additional rights: file descriptors

File descriptors are used to grant additional rights:

e File descriptors to directories: expose parts of the
file system to the process.
e Sockets: make a process network accessible.

o File descriptor passing: receive access to even more
resources at run-time.

e Process descriptors: handles to processes.

File descriptors have permission bitmasks, allowing
fine-grained limiting of actions performed on them.

19



Consider a web service running on CloudABI that gets
started with the following file descriptors:

e a socket for incoming HTTP requests,

e aread-only file descriptor of a directory, storing the
files to be served over the web,

e an append-only file descriptor of a log file.

When exploited, an attacker can do little to no damage.

20



Observation: UNIX ABI becomes tiny if you remove all
interfaces that conflict with capability-based security.

CloudABI only has 58 system calls. Most of them are
not that hard to implement.

Goal: Add support for CloudABI to existing UNIX-
like operating systems.

Allows reuse of binaries without recompilation.
Mature: FreeBSD and NetBSD, ARM64 and x86-64
Experimental: Linux

21



nuxi

Overview

What’s wrong with UNIX?
Introducing CloudABI
Developing CloudABI software
Starting CloudABI processes

Use cases for CloudABI

22



nuxi

Developing CloudABI software

Building software for CloudABI manually is not easy:

e Cross compiling is hard, not just for CloudABI.
e Toolchain depends on a lot of components.
e Most projects need to be patched in some way:
o Removal of capability-unaware APIs breaks the build,
which is good!
o cloudlibc tries to cut down on obsolete/unsafe APIs.
o Autocont from before 2015-03 doesn’t support CloudABI.

23



Collection of cross compiled libraries and tools.
Packages are built for FreeBSD, Dragonfly BSD,
NetBSD, OpenBSD, Debian and Ubuntu.

o Native packages, managed through apt-get, pkg.

o Contents are identical, except for installation prefix

(/usr vs. /usr/local vs. /usr/pkg).
o Consistent development environment on all systems.

Packages don’t contain any native build tools.
o Should be provided by the native package collection.

Packages include Boost, cURL, GLib, LibreSSL, Lua.

24



nuxi

CloudABI Ports in action

Install Clang and Binutils from FreeBSD Ports:
$ pkg install cloudabi-toolchain

Install core libraries from CloudABI Ports:

$ vi /etc/pkg/CloudABI. {conf, key}

$ pkg update

$ pkg install x86_64-unknown-cloudabi-cxx-runtime

Build a simple application using Clang and cloudlibc:
$ x86_64-unknown-cloudabi-cc -o hello hello.c

25



nuxi

Overview

What’s wrong with UNIX?
Introducing CloudABI
Developing CloudABI software
Starting CloudABI processes
Use cases for CloudABI

26



nuxi

Simple CloudABI program: Is

#include <dirent.h>
#include <stdio.h>

int main() {
DIR *d = fdopendir(0);
FILE *f = fdopen(1, “w");
struct dirent *de;
while ((de = readdir(d)) != NULL)
fprintf(f, “%s\n”, de->d_name);
closedir(d);
fclose(f);

27



nuxi

Executing our Is through the shell

$ x86_64-unknown-cloudabi-cc -0 1ls 1s.c
$ kldload cloudabié4 # FreeBSD > 11.0
$ ./1s < /etc

fstab
rc.conf

[...]

28



Starting processes through the shell feels unnatural:

e The shell cannot (in a portable way) create sockets,
shared memory objects, etc.

e How would you know the ordering of the file
descriptors that the program expects?

e How do you deal with a variable number of file
descriptors?

e You can no longer configure programs through a
single configuration file.

29



nuxi

Introducing cloudabi-run

$ cloudabi-run /my/executable < my-config.yaml

e Allows you to start up a CloudABI process with an
exact set of file descriptors.

e Merges the concept of program configuration with
resource configuration listing.

e Replaces traditional command line arguments by a
YAML tree structure.

30



nuxi

Configuration for a web server

hostname: nuxi.nl
concurrent_connections: 64
listen:

- 148.251.50.69:80

logfile: /var/log/httpd/nuxi.nl.access.log

rootdir: /var/www/nuxi.nl

31



nuxi

Configuration for a web server

%TAG ! tag:nuxi.nl,2015:cloudabi/

hostname: nuxi.nl
concurrent_connections: 64
listen:

- Isocket

bind: 148.251.50.69:80

logfile: Ifile

path: /var/log/httpd/nuxi.nl.access.log
rootdir: !file

path: /var/www/nuxi.nl

32



nuxi

Configuration for a web server

%TAG ! tag:nuxi.nl,2015:cloudabi/

hostname: nuxi.nl
concurrent_connections: 64

listen:
- Ifd O
logfile: 1fd 1

rootdir: !fd 2

33



nuxi

From a programmer’s perspective

#include <argdata.h>
#include <program.h>

volid program_main(const argdata_t *ad) {
argdata_get_bool(ad, ..);
argdata_get_fd(ad, ..);
argdata_get_int(ad, ..);
argdata_get_str(ad, ..);
argdata_iterate_map(ad, ..);
argdata_iterate_seq(ad, ..);

34



nuxi

Advantages of using cloudabi-run

For users and system administrators:

e Configuring a service requires no additional effort.

e Impossible to invoke programs with the wrong file
descriptor layout, as there is no fixed layout.

e No accidental leakage of file descriptors.

e YAML: Easy to generate and process.

For software developers:

e No need to write a configuration file parser.
e No need to write code to acquire resources on startup.

35



nuxi

Overview

What’s wrong with UNIX?
Introducing CloudABI
Developing CloudABI software
Starting CloudABI processes
Use cases for CloudABI

36



nuxi

Secure hardware appliances

Hardware appliance vendors can run arbitrary code
without any compromise to system security:

e Network appliances: users can run custom packet
filters without compromising system stability.

e Email appliances: third-party virus scanner and
spam filter modules safely.

37



nuxi

High-level cluster management

CloudABI as the basis of a cluster management suite:

e Dependencies of software are known up front.

e Allows for smarter scheduling.

o Automatic capacity planning.

o Improving locality.
e Automatic migration of processes between systems.
e Automatic routing of traffic on external addresses

to internal processes, load balancing, etc.

38



A service where customers can upload executables and
have them executed in the cloud.

e Unlike Amazon EC2, there is no virtualization
overhead.

e Unlike Amazon EC2, there is no need to maintain
entire systems; just applications.

e Unlike Google App Engine, applications can be
written in any language; not just Python/Java/Go.

39



nuxi

More information

CloudABI:
https://github.com/NuxiNL/cloudlibc
https://github.com/NuxiNL/cloudabi-ports

#cloudabi on EFnet

Nuxi, the company behind CloudABI:
https://nuxi.nl/
info@nuxi.nl

40


https://github.com/NuxiNL/cloudlibc
https://github.com/NuxiNL/cloudlibc
https://github.com/NuxiNL/cloudabi-ports
https://github.com/NuxiNL/cloudabi-ports
https://nuxi.nl/
https://nuxi.nl/
mailto:info@nuxi.nl
mailto:info@nuxi.nl

